- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Passow, Uta (2)
-
Benitez-Nelson, Claudia (1)
-
Bisson, Kelsey (1)
-
Bretherton, Laura (1)
-
Buesseler, Ken O (1)
-
Cetinić, Ivona (1)
-
Close, Hilary G (1)
-
Crockford, Taylor (1)
-
Erickson, Zach (1)
-
Fox, James (1)
-
Graff, Jason R (1)
-
Halewood, Stuart (1)
-
Kramer, Sasha J (1)
-
Lam, Phoebe (1)
-
Nelson, Norman B (1)
-
Quigg, Antonietta (1)
-
Rau, Matthew J (1)
-
Roca-Martí, Montserrat (1)
-
Roesler, Collin (1)
-
Romanelli, Elisa (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Fragmentation of marine snow affects the downward flux of organic matter, and other aggregate‐associated compounds such as oil. Using phytoplankton aggregates, we demonstrate that marine snow with oil, termed marine oil snow, had a higher resistance to fragmentation compared to marine snow without oil when exposed to turbulence ex situ. At moderate shear levels, typical of the ocean mixed layer, 17% of marine snow without oil broke, whereas 63% of marine snow fragmented at intermediate shear. In contrast, only 17% and 33% of marine oil snow fragmented at the intermediate and highest shear levels, respectively. Our results suggest that oil increases the cohesion and stability of aggregates making them less susceptible to breaking. This work contributes toward explaining the exceptional oil sedimentation event following the 2010 spill in Gulf of Mexico. It also enhances our understanding of the factors that determine the probability of sinking aggregates to fragment.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Graff, Jason R; Nelson, Norman B; Roca-Martí, Montserrat; Romanelli, Elisa; Kramer, Sasha J; Erickson, Zach; Cetinić, Ivona; Buesseler, Ken O; Passow, Uta; Zhang, Xiaodong; et al (, Elem Sci Anth)Measurements of particulate organic carbon (POC) are critical for understanding the ocean carbon cycle, including biogenic particle formation and removal processes, and for constraining models of carbon cycling at local, regional, and global scales. Despite the importance and ubiquity of POC measurements, discrepancies in methods across platforms and users, necessary to accommodate a multitude of needs and logistical constraints, commonly result in disparate results. Considerations of filter type and pore size, sample volume, collection method, and contamination sources underscore the potential for dissimilar measurements of the same variable assessed using similar and different approaches. During the NASA EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) 2018 field campaign in the North Pacific Ocean, multiple methodologies and sampling approaches for determining POC were applied, including surface inline flow-through systems and depth profiles using Niskin bottles, in situ pumps, and Marine Snow Catchers. A comparison of results from each approach and platform often resulted in significant differences. Supporting measurements, however, provided the means to normalize results across datasets. Using knowledge of contrasting protocols and synchronous or near-synchronous measurements of associated environmental variables, we were able to reconcile dataset differences to account for undersampling of some particle types and sizes, possible sample contamination and blank corrections. These efforts resulted in measurement agreement between initially contrasting datasets and insights on long-acknowledged but rarely resolved discrepancies among contrasting methods for assessing POC concentrations in the ocean.more » « less
An official website of the United States government
